
This book takes a comprehensive look at the state of implant 
dentistry today, equipping beginners and seasoned clinicians 
alike to improve their skills and practice implant dentistry 
safely and predictably. The early chapters focus on the biol-
ogy of dental implants as well as medical considerations 
required prior to placing them, followed by chapters dedicated 
to documentation, treatment planning, and digital workflow. 
Surgical concepts are then described in detail, from single-
tooth extraction to guided All-on-X treatment, followed by 
detailed discussion of the prosthetic options available in 
implant dentistry. The final chapters include relevant topics 
such as soft tissue management in implant dentistry, treat-
ment of peri-implant disease, the socket shield technique, and 
marketing of dental implant therapy. Written by experienced 
clinicians from all over the world, the book includes over 
60 surgical and clinical videos (linked via QR codes) to 
demonstrate what the procedures and techniques and 
products look like in real life, not in photographs taken in 
ideal conditions, so readers can be confident in their under-
standing. It is the authors’ hope that this book will benefit all 
implant surgeons by adding to their current knowledge base 
and improving their ability to make rational, evidence-based 
decisions in implant dentistry.
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PREFACE

The use of dental implants has become so widespread 
over the past few decades that scores of textbooks 
have been dedicated to this topic. As little as 50 years 

ago, the practice of dentistry did not include the modern 
implants, bone grafts, barrier membranes, or growth factors 
currently available in today’s market. It wasn’t until the 
late 1970s that Brånemark and his colleagues presented 
the two-stage threaded titanium implant procedure that we 
know today, following a decade of testing in various animal 
and human models. While the original Brånemark implant 
was a cylindrical fixture, over the years the shape has shifted 
to tapered, and many new implant types, body designs, and 
surface morphologies have been adopted. Entire compa-
nies have been formed with the goal of delivering faster, 
more predictable results to our patients. Today, the field has 
been trending, as rapidly as ever, into the world of digital 
implant dentistry. This book highlights all these ground-
breaking discoveries, many of which are credited to the 
book’s contributors—some of the most talented clinicians 
working in the profession today.

Over 50 authors from around the world have contrib-
uted to this textbook, all of them with different back-
grounds and expertise in various subspecialties of implant 
dentistry. Chapters 1 to 4 focus on the biologic back-
ground for dental implants as well as medical consider-
ations required prior to placing them, and chapters 5 and 
6 are dedicated to documentation, including photography 
and CBCT imaging. Chapters 7 and 8 focus on treatment 
planning and digital workflow, and chapters 9 to 18 cover 
many surgical concepts, from single-tooth extraction to 

guided All-on-X treatment. Chapters 19 to 22 focus on 
the prosthetic options available to us in implant dentistry, 
while chapters 23 to 31 hit upon additional topics related 
to the field. These include soft tissue management, treat-
ment of peri-implant disease, the socket shield technique, 
and marketing of dental implant therapy.

Preparing this textbook has been a massive undertak-
ing. The editors wanted to bring you THE book on implant 
dentistry so every clinician, whether a beginner or a 
seasoned pro, can find what they need to practice implant 
dentistry well and continue to improve their skills and 
patient outcomes. To accomplish this goal, the book was 
written using only evidence-based approaches performed 
on a daily basis by experienced clinicians. As such, the tech-
niques and advice given are based on real-world experiences 
in the clinic. As an added learning tool, over 60 surgical 
and clinical videos are included within the book (linked via  
QR codes) to SHOW you what these procedures and tech-
niques and products look like in real life, not in photographs 
taken in ideal conditions. 

We are very proud to present this book to you, and we 
hope to keep it updated over time as new developments, 
products, techniques, and research become available. The 
goal will always be to provide new and experienced clinicians 
with the most up-to-date and evidence-based textbook writ-
ten in implant dentistry. As such, it is our hope that this book 
will benefit all implant surgeons by adding to their current 
knowledge base and improving their ability to make rational, 
evidence-based decisions in implant dentistry.
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OBJECTIVES
• Understand how overall patient 

health directly affects dental 
implant osseointegration

• Understand the key cells 
involved in bone formation, 
maturation, and maintenance

• Understand the direct role of 
immune cells on biomaterial and 
dental implant integration

• Understand the essential role 
of optimizing the immune 
system prior to dental implant 
placement

• Investigate the relationship 
between vitamin D deficiency 
and early implant failure and 
how to avoid such pitfalls

SUMMARY

Despite the increasing number of studies in the field of implant 
dentistry investigating novel dental implant surfaces, biomateri-
als, and growth factors, comparatively very few have studied the 
biology and metabolism of bone healing and its implication in 
peri-implant tissue health. The aim of this chapter is to provide 
a thorough understanding of the biologic properties that impact 
bone formation and osseointegration, including the coupling 
mechanisms between immune cells and bone. This chapter 
focuses on the various bone cells in the body—osteocytes, bone 
lining cells (BLCs), osteoblasts, and osteoclasts—and their bone 
remodeling cycle. Furthermore, the importance of immune cells 
and their impact on biomaterial integration during bone forma-
tion and implant osseointegration is also discussed. Finally, the 
putative effects of cholesterol, hyperlipidemia, and vitamin D 
deficiency are addressed. Such factors should be monitored 
during patient care, and ultimately future research should focus 
on these avenues as well as meticulous maintenance programs 
to favor both early and long-term maintenance and stability of 
dental implants.

1
BONE METABOLISM  
AROUND DENTAL IMPLANTS
RICHARD J. MIRON
ANGEL INSUA

Bone regeneration requires bone grafting materials that possess excellent 
biocompatibility and osteoinductivity without eliciting an antigenic effect. 
While companies that manufacture replacement biomaterials intended to 

mimic autogenous bone grafts often report on their osteoconductive, osteoin-
ductive, or osteogenic potential, autogenous bone still favors the greatest bone 
regeneration compared to allografts, xenografts, and synthetic alternatives because 
it combines all three of these properties. Thus, despite the increasing number of 
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new bone grafting materials brought to market as substitute 
replacement grafts, to date there is no true replacement for 
autogenous bone grafts.1 Autografts carry no risk of immu-
nologic reaction or disease transmission and provide opti-
mal conditions for the penetration of new blood vessels and 
migration of osteoprogenitor cells. In contrast, many bone 
grafting substitutes are osteoconductive but have limited 
osteoinductive potential.2

For bone regeneration to take place, especially with 
foreign-body biomaterials such as allografts and xenografts 
or dental implants, there is a great need to better understand 
the regulatory properties and integration process of these 
biomaterials. After all, no matter the biomaterial placed, 
bone formation relies on immune-related factors working 
at the cellular level. The aim of this chapter is therefore to 
provide the biologic background on the cells involved in 
graft consolidation and give a brief overview of fracture 
healing. This chapter focuses on the bone cells involved 
in bone formation and dental implant osseointegration, 
including osteocytes, BLCs, osteoblasts, and osteoclasts, 
and their bone remodeling cycle. The chapter also addresses 
the importance of immune cells and their impact on bioma-
terial integration, as well as the putative effects of choles-
terol, hyperlipidemia, and low vitamin D levels.

Bone Cells: Osteoclasts,  
Osteoblasts, and Osteocytes
There are three main cell types in bone tissue involved in 
the bone remodeling cycle: osteoclasts, osteoblasts, and 

osteocytes3 (Fig 1-1). Osteoclasts are the bone-resorbing 
cells that degrade bone tissues. They are derived from hema-
topoietic stem cells following their differentiation from 
monocytes in response to two key factors: receptor activator 
of nuclear factor kappa-B ligand (RANKL)4 and macrophage 
colony-stimulating factor (M-CSF).5 Osteoclasts can be 
characterized histologically based on their multinucleated 
morphology and expression of tartrate-resistant acid phos-
phatase (TRAP), cathepsin k (CatK), and the calcitonin 
receptor (CTR). Their formation, activity, and survival are 
also regulated by various hormones (such as calcitonin and 
estrogen) that regulate several downstream cytokines and 
cellular pathways.6 Activated osteoclasts form distinct and 
unique membrane domains, including the sealing zone, 
the ruffled border, and the functional secretory domain, 
which facilitate resorption of bone or bone graft particles.7 
Rearrangement of their F-actin fibers from the cytoskeleton 
forms a ring shape consisting of a dense continuous zone 
of highly dynamic podosomes.8 These podosomes allow for 
mineralized bone to be gradually resorbed, creating grooves 
and tunnels on the bone surface. This process is also quite 
important for bone remodeling because the resorbed bone 
liberates calcium phosphates and growth factors contained 
within the bone matrix that attract bone-forming osteo-
blasts to the local environment.9

Osteoblasts perform the opposite role of osteoclasts and 
are responsible for bone formation (see Fig 1-1). They are 
derived from cells of the mesenchymal lineage, and their 
formation and development are controlled locally and 
systemically by several growth factors, including bone 

FIG 1-1 The bone remodeling 
cycle. Osteoclasts—cells that 
destroy and resorb bone—are  
present on the bone matrix 
surface and liberate growth 
factors and cytokines to the 
local microenvironment. These 
growth factors act on mesen-
chymal stem cells/progenitor 
cells to rapidly stimulate their 
proliferation and differenti-
ation toward bone-forming 
osteoblasts. Osteoblasts lay 
new bone matrix and, once 
embedded within the bone 
matrix, become osteocytes.

Liberated 
matrix-bound 
growth factors

Mediators of 
osteoclasto- 
genesis Active osteoblasts

Surface osteoblasts

Embedded 
osteocytes

Mechanical factors 
Hormones  
Cytokines

Proliferation  
and maturation

Osteoprogenitor cellsProliferation

Osteoclast
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morphogenetic proteins (BMPs).10,11 Osteoblasts secrete 
a range of molecules including growth factors, cell adhe-
sion proteins, and other extracellular matrix molecules that 
support new bone formation.6 While osteoblasts are form-
ing bone, they become embedded within bone tissues and 
transform into osteocytes. 

Contrary to the short lifespan of osteoblasts and osteo-
clasts, osteocytes can live for decades within the bone 
matrix. They no longer produce new bone and instead 
undergo morphologic changes, losing cytoplasm organelles 
and acquiring a stellar shape morphology with numerous 
extensions that connect to other osteocytes through the 
canalicular network.12 Osteocytes can then transmit signals 
through this network similar to neuron communication; 
this communication has a profound impact on neighbor-
ing osteoblasts, osteoclasts, and osteocytes. While it was 
initially believed that osteocytes served only a mechani-
cal transduction function,13 more recently their role has 
been deemed one of the most important within the bone 
tissues because they release numerous paracrine signals to 
their environment, thereby infl uencing both osteoblasts 
and osteoclasts.12,14,15

Fracture Healing and Graft Consolidation
Fracture healing is an important process that involves vari-
ous cell types and a variety of signaling pathways.3,16,17 Unlike 
other tissues in the body, bone tends to regenerate and repair 
itself quite rapidly. Natural fracture healing is a four-stage 
process (Fig 1-2). The fi rst step is hematoma formation. 
Following injury, a blood clot forms, creating a fi brin matrix 
with an abundance of infi ltrating infl ammatory and immune 
cells that take place with an activation of platelets.16,18

These cells secrete an array of growth factors that initiate 
the second and third phases of fracture repair.16,18 At the 
terminal end of the fi rst phase, osteoclast formation occurs 
from precursor monocytes, and these osteoclasts invade the 
bone surface, commencing bone resorption.16

The second phase of fracture healing is the repair phase. 
During this phase, a bone callus is formed. Initially, blood 
vessels begin to form with infi ltration of mesenchymal 
progenitor cells; this process is responsible for creating a 
fi brocartilagenous tissue that matures into bone. This woven 
bone is gradually replaced with dense lamellar bone to form 
a dense bony callus in phase 3.19

The fi nal phase is the remodeling phase, during which 
the callus is gradually resorbed. In this stage, the bone is 
replaced by native bone lacking scar tissue.20 It has been 
shown that during this phase, resident macrophages play 
a predominant role in orchestrating host cells.21,22 While 
these four phases are not described in great detail within the 
present chapter, it is important to note that graft consolida-
tion is tightly regulated by secretion of growth factors and 
cytokines (also secreted from autogenous bone particles 
and blocks). This is all tightly regulated in very distinct 
cell-to-cell communication events that take place during 
bone regeneration.3

Role of Osteocytes and Bone Lining 
Cells in Bone Remodeling
Osteocytes
Osteocytes are the pivotal cells in the regulation of bone 
mass and structure, along with osteoblasts and osteoclasts.23

Osteoblasts are derived from mesenchymal stem cells and 

Hematoma

1.  Hematoma 
formation

2.  Fibrocartilage 
callus formation

3.  Bony callus 
formation

4.  Bone 
remodeling

External 
callus

Bony callus 
of spongy 
bone

Healed 
fracture

New blood 
vessels

Spongy 
bone 
trabecula

Internal callus 
(fibrous tissue 
and cartilage)

FIG 1-2 The fracture healing process is divided into four phases: (1) hematoma formation, (2) fibrocartilage callus formation, (3) bony callus 
formation, and (4) bone remodeling.
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synthesize new bone matrix.24 Osteoclasts are terminally 
differentiated multinucleated cells from the monocyte- 
macrophage lineage; beyond their resorbing bone function, 
these cells are also a source of cytokines that play an important 
role in bone homeostasis.25 Osteocytes are terminally differ-
entiated osteoblasts, and their primary function is to support 
bone structure and mechanosensation.24 Osteocytes may act 
as regulators of bone remodeling by modulating osteoclast and 
osteoblast activities.25 These stellate-shaped cells are located 
within lacunae surrounded by mineralized bone matrix and 
present with connections through cytoplasmic prolongations 
with surface BLCs but also with bone marrow.15,25

Bone lining cells
BLCs are cells involved in bone formation much like preosteo-
blasts, osteoblasts, and osteocytes.26 They are characterized 
by a flat-shaped architecture along bony surfaces25 and may 
be considered latent osteoblasts.27 In human cancellous bone, 
around 65% of osteoblasts undergo apoptosis, with approx-
imately 30% differentiating into osteocytes28; the reduced 
remnants become BLCs and chondroid-like cells.26,28 BLCs 
maintain their proliferative capability and often differentiate 
into other osteogenic cells.29,30 Various studies have shown 
that some factors can induce their proliferation prior to bone 
formation,31 while mature osteoblasts are unable to divide.26 
Osteoblasts may also undergo a quiescent stage when there 
is no bone resorption or remodeling,29 but the function of 

BLCs might be more complex than a simple latent state,32 
including catabolic and anabolic bone processes31 and rapid 
bone formation under osteogenic signaling.32 

In the complex process of bone remodeling,33,34 external 
factors such as mechanical loading, irradiation, parathyroid 
hormone (PTH), fibroblast growth factor-2 (FGF2), scle-
rostin inhibition, or inflammation may lead BLCs to exit the 
quiescent stage and enter into an active function phase by 
re-forming their cuboidal appearance and their secretory 
capability.25,31,35 The presence of BLCs observed histologically 
indicates a strong sign of osteogenic potential29 and is often 
regarded as a major source of osteoblasts and proliferating 
preosteoblasts in the adult population.31 This prominent role 
in new bone formation was previously highlighted28,32 when 
rapid bone formation was observed after mechanical loading 
without previous bone resorption. Early peak bone formation 
after 3 days was only possible if BLCs underwent reactivation 
and reaquired their secretory capacities.28,32

Moreover, BLCs exert a prominent function during 
bone resorption,36 demonstrated by their ability to express 
key ostoclastogenesis markers including M-CSF recep-
tor (M-CSFR), and after the modulation of bone resorp-
tion, BLCs play another important role in the early stages 
of bone formation by entering the resorption lacunae 
to remove collagen fibers and debris left by osteoclasts  
(Fig 1-3). Subsequent to this cleaning function, BLCs 
secrete a layer of fibrillar collagen, allowing osteoblasts to 
attach and deposit new osteoid.36

FIG 1-3 Bone remodeling after exces-
sive implant torque. (1) Excessive torque 
promotes bone damage, including the 
osteocyte network. (2) Osteoblasts 
and osteoclasts are recruited from the 
blood, from the marrow, or from BLCs 
to populate the bone remodeling 
compartment. (3) Osteoclasts remove 
the damaged bone. (4) BLCs clean 
the debris after osteoclast resorption.  
(5) BLCs secrete fibrillar collagen.  
(6) This collagen layer allows osteo-
blasts to attach. (7) Osteoblasts 
deposit osteoid to fill the compart-
ment. (8) Osteoblasts trapped in  
the osteoid become osteocytes or 
BLCs, after which most undergo  
apoptosis. (Reprinted with permission 
from Seeman.34)
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Role of Macrophages in Bone  
Regeneration, Implant Osseointegration, 
and Breakdown
Macrophages play a prominent and central role in bone 
homeostasis and bone/biomaterial integration around dental 
implants.37 Specifically in bone tissues, a special subset of 
macrophages, termed osteal macrophages (or OsteoMacs), 
have recently been highlighted as playing a pivotal role in 
the fate of implant osseointegration.37 The general role of 
OsteoMacs in bone is to act as immune surveillance cells 
within their microenvironment.38,39 When a foreign-body 
biomaterial such as a dental implant is inserted transmu-
cosally into alveolar bone, a rapid accumulation of macro-
phages is typically found at the implant surface.40 Cheh-
roudi et al clearly showed that bone formation on titanium 
dental implant surfaces was routinely preceded by macro-
phage accumulation (prior to bone deposition).40 Despite 
this prominent finding, over 90% of research to date has 
focused on osteoblast and fibroblast behavior toward mate-
rial surfaces, with only a small percentage (10%) dedicated 
to immune cell interactions including monocytes, macro-
phages, osteoclasts, leukocytes, and multinucleated giant 
cells (MNGCs).41 This major discrepancy is difficult to 
understand given the fact that macrophages and immune 
cells in general dictate how biomaterials will eventually be 
integrated into host tissues.

A series of key studies on OsteoMacs has shown that 
their removal during bone development is consistently 
associated with a reduction in bone modeling, bone 
remodeling, and bone repair.42–45 Furthermore, in primary 
osteoblast cultures (containing macrophages), the simple 
removal of macrophages from these in vitro systems leads 
to a 23-fold decrease in the mineralization potential of 
bone cells.44,46 Therefore, while basic studies have clearly 
pointed to their vast and substantial role in bone biol-
ogy, much less information is available concerning the 
response of macrophages to implanted biomaterials such 
as bone grafts and dental implants. It is therefore crucial 
that we gain a better understanding of how immune cells 
and macrophages behave in relation to dental implant  
osseointegration and maintenance.

Macrophage polarization: M1 and M2 phenotypes
Macrophages are some of the most plastic cell types found 
in the human body. They polarize completely from the clas-
sical M1 macrophages (involved in tissue proinflammation) 
toward M2 (tissue regeneration) macrophages (Fig 1-4). 
They may also fuse into osteoclasts and resorb bone or fuse 
into MNGCs, where their role remains poorly defined.47,48 

The primary difference between M1 and M2 macrophages 
is that M1 macrophages have their arginine metabolism 
shifted to nitric oxide (NO) and citrulline, whereas M2 
macrophages are shifted toward ornithine and polyamines.49 
M1 macrophages produce NO as a main effector molecule 
capable of inhibiting cell proliferation,50 while M2 macro-
phages generate ornithine, increasing cell proliferation and 
repair through polyamine and collagen synthesis.51

During dental implant osseointegration, classical M1 
macrophages secrete a wide array of proinflammatory cyto-
kines including tumor necrosis factor alpha (TNF-α), inter-
leukin 1 beta (IL-1β), IL-6, IL-12, MMP-2, and MMP-9, 
typically induced by interferon gamma (IFN-γ) and lipo-
polysaccharide (LPS) or TNF-α (in vitro).50,52 In contrast, 
M2 macrophages are produced in response to IL-4 or IL-13 
and also secrete a wide variety of proregenerative cytokines 
including platelet-derived growth factor BB (PDGF-BB), 
transforming growth factor beta 1 (TGF-β1), vascular endo-
thelial growth factor (VEGF), IL-4, IL-10, and chemokine 
ligand 18 (CCL18). As can be expected, their polarization 
around implant surfaces is highly relevant for implant inte-
gration and long-term stability. Their role, especially as it 
relates to peri-implant infection, is extremely vital for the 
long-term maintenance of dental implants.

Macrophages, immune cells, and the foreign 
body reaction

It has been reported that implant osseointegration is a 
long-term equilibrium between host immune cells and 
bone biomaterials.53–55 The literature has showed that 

Inflammatory
activation

Regenerative
activationMacrophages

Cytotoxicity
Tissue injury

Immune suppression
Tissue repair

FIG 1-4 Macrophage polarization of both M1 and M2 phenotypes. M1 
macrophages typically represent tissue inflammation and destruction. 
M2 macrophages are responsible for healing and tissue resolution.



6

Bone Metabolism Around Dental Implants1

MNGC accumulation on implant surfaces leads to bioma-
terial breakdown and possible implant failure/rejection.53–55 
These papers demonstrate that implant osseointegration 
and eventual peri-implant bone loss is likely a direct result 
of an M1-M2 shift in macrophage polarization. Interestingly, 
invading periodontal pathogens are known to secrete LPS, 
a known and direct molecule influencing proinflammatory 
M1 macrophage polarization.56 Hence, it is important to 
examine foreign body reaction, equilibrium between M1 
and M2 macrophages, and MNGC polarization. Further-
more, these studies stressed heavily the material rejection 
with MNGC accumulation, further implicating the role of 
immune cells. As such, clinicians should always consider the 
dramatic importance and role of immune cells and general 
immune cell health during dental implant placement (see 
later section on vitamin D deficiency and chapter 2).

Bone Remodeling Around  
Dental Implants
After dental implants are anchored, a sequence of 
immune-inflammatory responses followed by angiogene-
sis and eventually osteogenesis take place to achieve osseo- 
integration. Initial protein adsorption is based on implant 
surface topography and hydrophilicity. Accordingly, throm-
bin and fibrinogen adhere to the implant surface. Later, 
neutrophils populate the implant recipient site before the 
monocytes and macrophages infiltrate the area. Cytokines 
and growth factors are then released and stimulate collagen 
matrix deposition around the titanium oxide layer, leading 
to newly formed woven bone (usually 5 days later). In a 
matter of 8 to 12 weeks, lamellar bone initiates biologic 
stability, or osseointegration.33

Just like the natural dentition, implants are subjected to 
soft and hard tissue remodeling after restoration delivery. 
The biologic width around dental implants has recently 
been shown to be about 3.5 mm, which is far greater 
than that around natural teeth.57 This physiologic bone 
remodeling mechanism to a foreign-body biomaterial is 
led by RANKL, which promotes macrophage activation 
into osteoclasts. It has been suggested that the microgap in 
two-piece implants might be associated with the presence 
of inflammatory cell infiltrate, which can lead to crestal 
bone loss by affecting both soft and hard tissues.58 A pump-
ing effect of the liquid contained in the implant cavities 
may move into the peri-implant compartment due to the 
cyclical loading of the implant-abutment interface and 
facilitate the colonization of the gap and inner walls of 
the implant by gram-positive and gram-negative bacteria.58 
These organic fluids with bacterial byproducts and endo-
toxins could upregulate the expression of proinflammatory 

cytokines in peri-implant tissues and stimulate the chemo-
taxis of active osteoclasts.58 Over time, leakage associated 
with micromovements can lead to a persistent inflamma-
tory reaction and eventual bone loss around the implant 
neck as well as peri-implantitis.59 Research has hinted that 
internal implant connections provide a better seal than 
external ones, but either can provide a complete seal.60,61 
Ongoing developments in implant and abutment design 
aim to limit this risk and reduce future crestal bone loss 
associated with microgap inflammation.

Effect of Excess Implant Torque on  
Bone Healing
Bone biology under implant insertion 
Adequate implant insertion torque (IT) values (25–45 Ncm) 
have been suggested to prevent micromovements that 
could lead to fibrous encapsulation. On the flip side, high 
IT has also been associated with an increase in critical 
pressure, triggering microfractures and bone necrosis.62 
It has been shown in animal models that high IT elicits a 
complex process of microdamage, which stimulated targeted 
bone remodeling.63 This was supported by a radiographic, 
histomorphometric, and histologic investigation that 
clearly demonstrated greater peri-implant bone loss in the 
early stages of healing for implants placed with a high IT  
(> 50 Ncm) compared with those more passively placed.64 
High IT has been shown to lead to osteocyte apoptosis and 
consequently may promote higher levels of RANKL secre-
tion to the surrounding environment to remove apoptotic 
cells.65,66 These findings highlight the importance of minimiz-
ing microfractures as a consequence of high IT to predictably 
preserve the peri-implant bone level. While a lack of primary 
stability may potentially jeopardize osseointegration, high IT 
might not favor the preservation of the peri-implant tissue 
level, so a reasonable level of torque must be achieved. 

Alveolar bone density further influences primary stabil-
ity. The maxillary ridge has been classified into four major 
types67; accordingly, denser bone is located in the anterior 
mandibular region, whereas more porous trabecular bone 
is detected in the posterior maxillary area. Recent findings 
seem to point to the influence of bone atrophy on bone 
density.68 Notwithstanding, the overlying cortex is mainly 
responsible for the mechanical stability of implants. Even 
when cortical bone has a higher elastic modulus69 and 
compressive strength than cancellous bone,70 the restrained 
vascularity of compact bone (ie, minimal to no migration of 
differentiating osteogenic cells) may result in peri-implant 
bone loss. Therefore, because of limited blood supply and 
lack of bone marrow, the number of osteoblasts in the bone 
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remodeling area may be limited, which can prevent the area 
from reaching the critical osteoblastic cell density required 
for bone formation to occur.71,72

Crestal bone levels under high and low IT
For immediate implant placement with or without immedi-
ate loading, primary stability is necessary (> 32 Ncm).73,74 
For delayed implant placement, on the other hand, an under-
standing of the resorption process of the bundle bone and 
the bone macroarchitecture and density might dictate the 
drilling sequence and IT applied. As such, implant place-
ment performed with high IT (≥ 50 Ncm) has been shown 
to be prone to marginal bone loss and recession, notably in 
the presence of a thin buccal bone.75 Marginal bone loss was 
found to be substantially higher when higher IT thresholds 
(> 70 Ncm) were studied.76 This association was statistically 
significant when including all IT values (up to 176 Ncm). 

Because of this risk of marginal bone loss, novel 
approaches for implant placement are being investigated. 
Simplified drilling methods are one proffered solution, 
and they do not seem to jeopardize the process of osse-
ointegration.75,76 Wider implants installed under higher IT 
have shown adequate secondary stability and high bone-to- 
implant contact (BIC), although healing delay was reported 
due to necrosis of the existing bone.77 Findings from another 
group indicated that submerged implants inserted at 0 Ncm 
IT displayed similar outcomes at 4 months compared to 
those inserted at 30 or 70 Ncm.78 Clinical outcomes echo 
the uncertain impact of high IT on peri-implant bone loss 
compared to low IT. Future research is currently investi-
gating alternative strategies including the application of  
osseodensification protocols,79 lasers,80,81 or ultrasound 
tools82–85 to enhance osseointegration.

Factors Affecting Bone Metabolism
Cholesterol and fatty acids
Within the last three decades, high-fat and high-cholesterol 
diets have become increasingly more prevalent in indus-
trialized societies,86 and as a consequence, the morbidity 
and mortality of obesity-related diseases such as cardio-
vascular disease and hyper-inflamed conditions have also 
increased.87,88 Obesity is also associated with an enhanced 
risk of periodontal disease.89,90

Obesity and high levels of cholesterol production have 
been linked for years, but the relation between obesity and 
serum levels is low.91–93 Similarly, the relationship between 
bone and body fat is complex and not totally understood.94 
Bone marrow fat (BMF) is the accumulation of fat cells 
inside the bone marrow tissue.95 An inverse correlation 

between bone mass and BMF has been reported.94–97 Higher 
adipogenesis in bone marrow may result in lower osteo-
blastogenesis, and these adipocytes can secrete saturated 
fatty acids that may impair osteoblast viability by inducing 
apoptosis and autophagy.95,96 Adipocytes can also release 
proinflammatory and osteoclastogenic cytokines (eg, TNF-α 
and IL-6) and adipokines and express RANKL.94,95,97–99

In other words, fatty acids96 and high levels of choles-
terol100 may disturb the bone formation–bone resorption 
equilibrium by downregulating the Wnt signaling pathway.101 
This is probably due to the effects of higher levels of TNF-α 
and sclerostin.102 The Wnt pathway balances the differenti-
ation of mesenchymal stem cells by inhibiting adipogenesis 
and promoting osteoblast proliferation, maturation, and 
differentiation.96 Animal studies have shown more bone 
resorption, less bone formation and bone mass, and higher 
levels of bone turnover markers in subjects with high- 
cholesterol diets.96,100,103–105

In addition, obesity induces a systemic inflammation 
condition with high levels of circulating cytokines and 
increased production of monocytes, neutrophils,106,107 and 
adipose tissue macrophages.108,109 These cytokines and the 
accumulation of cholesterol in macrophages can alter the 
ratio of M1-M2 macrophages, promoting an M1 proinflam-
matory environment and thereby increasing the numbers of 
monocytes/macrophages in circulation.108,110

The influence of obesity and increased levels of choles-
terol and triglycerides have been extensively described in 
the medical field, but the effect of hyperlipidemia on dental 
implant osseointegration has not yet been fully elucidated.111 
Significantly more peri-implant bone loss, reduced bone 
formation, and lower strength in the bone-implant interface 
has previously been reported in mice after a 12-week high-fat 
diet.111 On the other hand, Dündar et al reported that there 
was no difference in BIC 12 weeks after implant placement 
between rabbits following a 3-month high-fat diet versus 
normal diet.112 Because hyperlipidemia might impair bone 
quantity and density, negative effects on implant osseointe-
gration might be speculated, but no conclusive evidence to 
date has been found.

Vitamin D
The link between vitamin D deficiency and early implant fail-
ure has recently gained attention, with data demonstrating 
higher failure rates compared to even smoking and gener-
alized periodontitis.113 Vitamin D is a fat-soluble hormone 
that regulates calcium phosphate homeostasis and mineral 
bone metabolism.114 It is transformed into the active form 
(1,25-dyhydroxyvitamin D3) by hydroxylation, first in the 
liver and then in the kidney.115 This vitamin can stimulate 
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osteoblast bone matrix production, coupling bone resorp-
tion to formation and optimizing bone remodeling.116 It 
increases calcium absorption in the intestine, leading to 
a reduction in PTH secretion and lower systemic bone 
resorption115,117,118 with a possible inhibition of osteoclas-
togenesis.119 1,25-dyhydroxyvitamin D3 can stimulate bone 
resorption by binding to osteoblast vitamin D receptors 
(VDRs) and by altering the balance between RANKL and 
osteoprotogerin (OPG).120–123

Vitamin D is a common substance in the prevention 
and treatment of osteoporosis, but research investigat-
ing its direct effects on dental implant osseointegration 
has just begun.118 Kelly et al studied the effects of vitamin 
D deficiency on the osseointegration process in rats and 
reported up to 66% lower BIC values and mechanical bone 
strength 2 weeks after implant placement.124 Noteworthy 
is that the authors suggest that implant failure might be 
confounded by the rising deficiency of vitamin D prevalence 
in various patient populations.124 On the other hand, Zhou 
et al reported a significant increase in peri-implant bone 
density, BIC (1.5 times higher), and peri-implant trabecu-
lar microarchitecture following implant placement in rats 
who had undergone an 8-week regimen of oral vitamin D 
supplementation.118 Similar results were reported in mice 
with chronic kidney disease (CKD), suggesting that vitamin 
D treatment may be an effective approach for implant place-
ment in patients with CKD.125 Recently, the effect of topical 
application of vitamin D (10%)126 and melatonin (5%)127 
solutions on the surface of immediate implants placed 
in dogs was evaluated. Both topical applications signifi-
cantly improved new bone formation around implants and 
reduced crestal bone loss at 12 weeks following surgery,127 
demonstrating the positive correlation between vitamin 
D and early stages of osseointegration. In combination, 
these results suggest that vitamin D has a protective effect 
on bone healing after implant insertion. Chapter 2 further 
describes this link and the importance of vitamin D levels 
in implant patients. 

Hyperglycemia
The number of adults with diabetes worldwide increased 
from 108 million in 1980 to 422 million in 2014.128 Type 1 
diabetes (previously known as insulin-dependent, juvenile, 
or childhood-onset) is characterized by deficient insulin 
production and requires daily administration of insulin. 
Type 2 diabetes (formerly called non-insulin-dependent or 
adult-onset) results from the body’s ineffective use of insu-
lin. Type 2 diabetes comprises the majority of people with 
diabetes around the world and is largely the result of excess 
body weight and physical inactivity.129 It is characterized 

by hyperglycemia, insulin resistance, and relative insulin 
deficiency.

Diabetes mellitus has been related to a deficient metabo-
lism of the skeletal tissue due to a suppression in osteoblast 
function and lower bone formation potential, independent 
of the type of bone, the location, and mechanical loading.130 
A higher risk of implant failure has been related to uncon-
trolled diabetes,131 and undiagnosed diabetes might be a 
possible reason for failed implants.132

Ajami et al reported delayed bone formation and remod-
eling in animals with hyperglycemia.132 Early bone miner-
alization might be affected due to a compromised intra-
fibrillar collagen mineralization, whereas interfibrillar and 
cement line mineralization remained normal.133 Diabetes 
also promotes a hypercoagulative state and a delay in fibrin 
clot resolution due to an increase in thrombin formation, 
platelet activation, and fibrin resistance.134 These events 
hinder platelet cytokines and growth factor release and 
cause limited pericyte and endothelial migration into the 
implant surface and thereby reduced angiogenesis.135

Other factors
Metabolic issues are not the only factors influencing bone 
remodeling. Medication, for example, might induce changes 
in bone cells and bone turnover and lead to bone loss around 
dental implants.136 Higher bone turnover seems to expose 
more implant surface, particularly in the mandible.136 Sero-
tonin reuptake inhibitors have been related to an increase in 
bone loss and higher implant failure,137 so updated and thor-
ough medical records are essential to avoid complications.

Hypersensitivity to titanium particles or ions released 
from the implant surface may also affect implant survival.136 
Corrosion of the implant surface or degradation of the tita-
nium dioxide layer can liberate wear particles that induce 
inflammatory reactions in the peri-implant tissues.138 In 
orthopedics, aseptic loosening is the main reason for long-
term failures of hip and knee implants.139According to 
this model, wear particles are recognized as foreign-body 
substances and phagocytosed by macrophages.138 Later, M1 
cells release inflammatory cytokines that promote osteo-
clastogenesis and osteolysis.138

Furthermore, it is important to note that certain antisep-
tic solutions commonly used in implant dentistry, such as 
chlorhexidine (CHX), have been shown to cause inflam-
mation and/or fibroblast apoptosis, leading to M1 macro-
phage polarization. In cases following surgery, it is advised 
to avoid CHX because it may delay healing. Recent studies 
have shown nearly a 2,000-fold increase in release of inflam-
matory markers such as TNF-α when gingival fibroblasts 
were exposed to CHX.140
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One novel replacement option that has shown promising 
results both before and after surgery is StellaLife’s recov-
ery kit, a homeopathic wound healing rinse (Fig 1-5). It 
favors better wound healing of the defect site as well as 
improved pain management with microbial resistance.141 A 
split-mouth study revealed that the StellaLife VEGA Oral 
Care Recovery Kit performed better than many frequently 
utilized materials including Peridex, plasma rich in growth 
factors (PRGF), platelet-rich plasma (PRP), Emdogain, and 
PerioSciences products. The following conclusions were 
reported in the StellaLife test group 141:

� The product achieved anesthetic pain relief.
� Healing was faster than with the control products.
� At 1 week, the sites treated with StellaLife resembled the 

other sites at 1 month (those treated with Peridex, PRGF, 
PerioSciences, PRP, or Emdogain). 

� Less pain was associated with the sites treated with 
StellaLife.

� Fewer problems were reported for the sites treated with 
StellaLife.

� The pain level (rated as 5 or less the fi rst day followed by 
less than 3 the consecutive days) was lower than antici-
pated (7 on a scale of 1 to 10).

StellaLife was initially developed to limit the need for 
narcotic drugs during healing and thereby battle the grow-
ing problem of narcotic dependence and addiction in the 
United States. In a study of 150 patients, all patients unan-
imously reported having fewer problems and recovering 
more quickly while utilizing StellaLife’s VEGA system 
compared to other products and therefore required fewer 
narcotic pain medications.

Conclusion
While implants have been highly researched over the years, 
it remains equally important to better understand how load-
ing and implant bed preparation aff ect BLCs and osteocyte 
viability and signaling both at early and late time points. 
Furthermore, the eff ects of systemic levels of cholesterol, 
fatty acids, and vitamin D are important factors that may 
aff ect implant survival. In addition, the prominent role of 
immune cells (eg, OsteoMacs and MNGCs) on bone forma-
tion, bone remodeling, and implant osseointegration and 
maintenance must be researched further to discover how 
immune cells can be controlled to favor long-term stability 
and prevent peri-implant disease. Future research investi-
gating these various topics is ongoing.
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OBJECTIVES
• Understand the important 

epidemiologic studies linking 
higher immune-related disorders 
among the US population and 
dental implant failure rates

• Learn how a lack of general 
health and increased use of 
medications may alter proper 
immune cell health

• Discover how vitamin D  
deficiency in the US  
population affects bone 
metabolism

• Understand the links between 
vitamin D deficiency and early 
implant failure

• Learn how to test vitamin D 
levels in the office in 15 minutes

• Understand proper  
supplementation guidelines 
for before and after implant 
placement

2
VITAMIN D DEFICIENCY  
AND EARLY IMPLANT FAILURE
RICHARD J. MIRON

SUMMARY

Dental implants are generally considered a very safe and 
highly predictable surgical procedure, yet each year a number 
of implants placed into adequate bone volume are lost within 
the first 8 weeks of healing. This chapter describes how nutri-
tional deficiencies, namely that of vitamin D, are partly to blame. 
Vitamin D deficiency is one of the most prominent and known 
deficiencies in modern industrialized societies. Vitamin D is 
a fat-soluble vitamin critical for proper immune function as 
well as bone homeostasis. Recent dental implant studies have 
demonstrated that while smoking and generalized periodontitis 
are associated with a 50% to 200% increase in dental implant 
failure, vitamin D deficiency is associated with up to a 300% 
increase in early implant failure. These shocking findings further 
highlight the fact that systemic health, including adequate vita-
min and mineral intake, play a critical role in biomaterial/dental 
implant integration.

This chapter briefly presents recent research on the promi-
nent links between vitamin deficiencies (particularly vitamin D) 
and early implant failure. Thereafter, a quick and easy in-office 
testing kit for vitamin D is presented that uses a simple finger 
prick, similar to glucose testing. Finally, supplementation guide-
lines and recommendations from the American Association of 
Clinical Endocrinologists (AACE) and the American College of 
Endocrinology (ACE) are presented for deficient patients with 
the aim of minimizing early implant failure potentially caused 
by vitamin/mineral deficiencies.
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Vitamin D deficiency is a worldwide public health 
problem that spans all age groups from children to 
adults. As we age, our ability to absorb vitamin D 

naturally decreases, and very few foods naturally contain 
sufficient doses. Of course we have a wonderful source 
of vitamin D available to us—the sun—but with most of 
the population working indoors, the majority of people 
in industrialized nations do not receive enough sunlight 
daily to maintain sufficient levels of vitamin D. As a result, 
epidemiologic studies report that roughly 70% of society 
worldwide is deficient.1

Vitamin D deficiency is most known for its association 
with osteoporotic and postmenopausal women. Few realize, 
however, its drastic and substantial role in various other 
diseases. These include depression, dementia, Alzheimer’s 
disease, asthma, cancer, cardiovascular disease, and diabe-
tes, among others highlighted throughout this book. Vita-
min D is essential for gastrointestinal calcium absorption, 
mineralization of osteoid tissue, and maintenance of serum 
ionized calcium level. It is also important for other physi-
ologic functions, such as muscle strength, neuromuscular 
coordination, and hormone release.2 More recently, vitamin 
D deficiency has also been associated with up to a 300% 
increase in dental implant failure, and more associations 
with other dental-related complications are being discov-
ered as well.3–12 Optimizing levels prior to surgery there-
fore becomes fundamental for maximizing wound healing. 
This chapter discusses the association between vitamin D 
deficiency and dental implant–related failures and bone 
grafting complications.

Understanding Foreign Body Reactions 
and Health

Importance of the immune system
Many years ago, scientists believed that it was bone cells 
(osteoblasts and osteoclasts) that would interact with a 
dental implant and, following an integration period, lay 
down new bone matrix for a happy coexistence of the 
implant within the body. However, modern research has 
shown that it is not bone cells that interact with this newly 
introduced biomaterial but in fact immune cells that gather 
around it. It is the immune system that dictates whether the 
biomaterial will be accepted and integrate within the body 
or be rejected altogether. It is the immune system that is 
ultimately responsible for the integration of any foreign 
substance.13 Therefore, when an individual has problems 
relating to the immune system, dental implant complica-
tions (ie, failure to integrate) may occur. That is why it is 
so vital that a healthy immune system is maintained.

Poor health in the United States
Despite boasting some of the best medical institutions, 
hospitals, and universities in the world, the United States has 
one of the sickest populations in the world. Americans take 
the most medication per capita, and their average life expec-
tancy is much lower than the populations of comparable 
industrialized nations (Fig 2-1). Over the past 70 years, life 
expectancy has consistently risen globally in industrialized 
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FIG 2-1 Life expectancy in the United States 
versus other industrialized countries. Since 
2014, life expectancy has leveled in the United 
States and even seen a slight dip, whereas it 
has continued to trend upward in almost all 
other comparable countries.
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countries, as health care and our understanding of science 
and medicine has improved. However, in 2014, the life 
expectancy for the United States population leveled and 
even dipped slightly, and it has not recovered or increased 
since, while all other comparable countries continued their 
upward trend. Evidence shows that this decline in US life 
expectancy is directly linked to the declining nutrition we 
eat and the unhealthy lifestyle we live here in the United 
States, both of which impact our immune systems and their 
ability to fight disease. Even US children have seen an alarm-
ing rise in immune-related disorders; child allergies have 
increased over tenfold in the last 50 years.14,15 

This reality of poor immune health in the United States is 
important to consider because practicing dentists are plac-
ing biomaterials into more and more patients with compro-
mised immune systems, which means greater risk of early 
implant failure and biomaterial-related complications.

Vitamin D deficiency is one of the most concerning issues 
in terms of immune health. Vitamin D is a powerful immu-
nomodulator, and without it the immune system does not 
function as efficiently, thus making patients more suscep-
tible to immune-related problems including allergies and 
compromised biomaterial integration. With adults and chil-
dren spending more time than ever before indoors, the rate 
of vitamin D deficiency among the global population has 
almost doubled in the past decade alone.16 This means that 
clinicians are placing implants into less healthy patients, 
and, despite recent improvements in biomaterial compati-
bility, osseointegration outcomes will be affected, thereby 
affecting implant failure rates as well.

Understanding Vitamin D  
and Its Optimal Levels
A reliable marker of vitamin D status is serum 25-hydroxy vita-
min D (25-OHD), and a level below 20 ng/mL defines defi-
ciency. Levels above 30 ng/mL are required to maximize the 
bone health and nonskeletal benefits of vitamin D (Table 2-1). 
For individuals undergoing any type of dental-related proce-
dures, levels between 40 and 60 ng/mL are generally recom-
mended, because levels may decrease significantly following 
a period of physical stress (eg, a dental surgical intervention).

Unfortunately, foods do not contain sufficient concentra-
tions of vitamin D to maintain appropriate levels for immune 
health. Even the foods with the most vitamin D—cod liver oil 
(400–1,000 IU/teaspoon),  fresh caught salmon (600–1,000 IU/ 
3.5 oz vitamin D3), tuna (236 IU/3.5 oz vitamin D3), egg  
yolk (20 IU/yolk vitamin D3 or D2), and fortified milk, 
cheese, or yogurt (100 IU/3 oz, usually vitamin D3)—contain  
relatively low concentrations of vitamin D, considering 

deficiency should be treated with 5,000 to 10,000 IU/day for 
a 4- to 12-week period to restore vitamin D sufficiency.

According to the American Association of Clinical 
Endocrinologists (AACE) and the American College of 
Endocrinology (ACE) guidelines, it is recommended that 
supplementation maintain levels above 30 ng/mL.17 The 
Endocrine Society in the USA recommends achieving a 
concentration of more than 30 ng/mL (> 75 nmol/L) of 
25-OHD. The Endocrine Society also advocates an intake 
of 1,500 to 2,000 IU/day (37.5–50 μg) in all adults, and 
obese patients (BMI > 30) should take as much as three 
times that.17 

Dental-Related Complications  
Associated with Vitamin D Deficiency
In addition to supporting the immune system and bioma-
terial integration, vitamin D decreases general oxidative 
stress and minimizes additional inflammation caused by 
surgery. Therefore, vitamin D deficiency can lead to various 
complications in the dental field.

In 2009, a study investigated the role of vitamin D on 
dental implant osseointegration in rats.9 In this study, 
implants were placed in both normal control and vitamin D–
deficient animals and subjected to push-out tests as well as 
histologic analysis. The push-out tests revealed an approx-
imate 66% decrease in value in the vitamin D–deficient  
group as well as significantly lower bone-to-implant contact 
(BIC) in the vitamin D–deficient group as early as 14 days 
after implant placement. It was concluded that the effect 
of vitamin D deficiency is actually quite profound. Future 
clinical research was recommended to benefit patient care 
by further evaluating the link between vitamin D deficiency 
and the potential for early or late implant failure.

TABLE 2-1 Vitamin D concentrations in humans from 
deficient to toxic 

Status  Serum 25-OHD
Vitamin D 

concentration

Severe 
deficiency < 10 ng/mL < 25 nmol/L

Deficiency < 20 ng/mL < 50 nmol/L

Insufficiency 21–29 ng/mL 50–74 nmol/L

Sufficiency 30–100 ng/mL 75–250 nmol/L

Optimal 30–60 ng/mL 75–150 nmol/L

Presurgery 40–60 ng/mL 100–150 nmol/L

Toxic > 150 ng/mL > 375 nmol/L
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Following years of preclinical studies demonstrating the 
marked impact of vitamin D deficiency on osseointegra-
tion, clinical studies began linking vitamin D deficiency 
with implant failure in 2014, beginning with case reports. 
Bryce and MacBeth reported that vitamin D deficiency was 
suspected as a causative factor in the failure of immediate 
implants and advised assessment of vitamin D levels prior 
to implant surgery, especially in patients having undergone 
either long-term hospital care or a recent traumatic injury/
event.4 Choukroun et al also noted that vitamin D deficiency 
was associated as a risk factor in bone grafting procedures.5

In 2016, Fretwurst et al reported that a number of implants 
required removal or were lost for unexplained reasons in a dental 

university clinic.6 These patients were then sent for various blood 
analyses to investigate a potential cause. It was found in each case 
report that extremely low serum vitamin D levels (< 20 μg/L) 
were reported in all cases. This study group described that after 
a 6-month period of healing and adequate vitamin D supplemen-
tation (> 46 μg/L), implants were successfully osseointegrated 
in all cases.6 It was recommended that future randomized clin-
ical trials be conducted to investigate the relationship between 
vitamin D deficiency and implant failure, osteoimmunology, and 
early implant complications.6

In 2017, Insua et al wrote an extensive review article on 
the concept of peri-implant disease being driven by osteo-
immunology, osteal macrophages, and their related break-
down and maintenance.8 An entire section was dedicated 
to vitamin D deficiency and its correlation with lower BIC 
and potential complications and peri-implant bone loss over 
time. Furthermore, the immune system was also discussed 
during homeostasis of peri-implant tissue/osseointegration.8

In 2018, Mangano et al published a retrospective study 
investigating over 1,700 implants in 885 patients.7 The 
results are shown in Table 2-2. To date, this represents the 
largest study on the association between vitamin D defi-
ciency and dental implant failure; in it, known complica-
tions such as smoking and generalized periodontitis were 
compared with vitamin D deficiency in terms of their 
implant failure rates. It was reported that both heavy smok-
ing (defined as 15 cigarettes per day) and generalized peri-
odontitis were associated with approximately a 50% increase 
in early implant failure compared to controls. Severe vitamin 
D deficiency (defined as serum levels < 10 ng/mL), on the 
other hand, was reported to be associated with nearly a 300% 
increase in overall implant failure compared to controls.7 
The conclusions from this study demonstrate the need for 
adequate testing, prevention, and supplementation both 
prior to dental implant placement and for maintenance.7

Testing Vitamin D Levels
Standard vitamin D tests are routinely performed by 
measuring serum vitamin D levels in whole blood serum; 
this provides an adequate analysis of blood vitamin D levels. 
However, an issue arises in the dental practice, where 
patients and dentists seek convenient and fast screening 
methods. To address this need, NanoSpeed developed a 
novel vitamin D test kit (Test4D) that is based on a simple 
finger prick test and only takes 10 minutes to get results 
(Fig 2-2). The technology utilizes the principle of a compet-
itive immunoassay. The assay is based on the competition  
for 25-OHD present in the blood/serum sample and 
vitamin D present on the test line for a fixed number of  
antibody-gold conjugate. Depending on the concentration 

TABLE 2-2 Number of patients, early failures, and failure 
rates within groups

Number of 
patients

Number 
of early 
failures

Failure  
rate (%)

Overall 885 35 3.9

Sex 

Males 455 18 3.9

Females 430 17 3.9

Age at surgery

< 40 years 100 5 5.0

40–60 years 412 15 3.6

> 60 years 373 15 4.0

Smoking habit

Heavy smokers  
(> 15 cigarettes/day) 98 6 6.1

Light smokers 
(1–15 cigarettes/day) 184 8 4.3

Nonsmokers 603 21 3.4

History of periodontal disease

Generalized 
periodontitis 97 6 6.1

Localized 
periodontitis 218 10 4.5

No periodontitis 570 19 3.3

Vitamin D serum levels

< 10 ng/mL 27 3 11.1

10–30 ng/mL 448 20 4.4

> 30 ng/mL 410 12 2.9
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of vitamin D in the blood/serum, there will be a varying 
number of free antibody-gold conjugate molecules that will 
bind to the vitamin D on the test strip, showing a colored 
line in the test line zone.

During the specimen preparation, a blood sample (10 μL) 
is collected from a finger prick and placed on the assay (red 
mark in Fig 2-2). Three full drops of the chase buffer are 
added into the square buffer well of the cassette, and within 
10 minutes, the vitamin D measurement may be obtained.

With this easy-to-use and convenient technology, it 
becomes possible to assess vitamin D levels prior to dental 
implant placement or bone grafting surgery to determine 
whether supplementation is needed to minimize implant/
graft failure. When patients are deficient, supplementation 
is recommended as highlighted in the next section.

Supplemental Recovery Program:  
The Science Behind Dental Healing
Ideally, all patients should achieve optimal levels of vitamin 
D and important co-factors prior to dental surgery. Bone- 
related support includes vitamin K, magnesium, calcium, 
manganese, and boron, among others. To support this goal, 
DentaMedica has formulated a 6-week supplementation 
program specifically designed to boost levels (10,000 IU/

day) for the 4 weeks prior to surgery and 2 weeks of main-
tenance postsurgery (Fig 2-3). For patients over 65 years of 
age, patients with diabetes, patients who smoke, patients 
with reported immunocompromise, or patients taking corti-
costeroids, a 12-week program is recommended (8 weeks 
prior to surgery and 4 weeks postsurgery). The DentaMedica  
supplements are taken both in the morning and in the 
evening, and patients stop all other forms of supplementa-
tion during their use.

Antioxidants and Their Role in  
Wound Healing 
Antioxidants in the diet have some remarkable benefits and 
valuable properties that play an irreplaceable role in the 
maintenance of periodontal health, bone physiology, and 
soft tissue wound healing. Antioxidants are molecules that 

FIG 2-2 Step-by-step instruc-
tions for utilizing the 10-minute 
vitamin D detection system 
(Test4D) for in-office use.

Read after 10 min Text report in nmol/L or ng/mL

Complete Test4D kit Put a drop of blood Put three drops of buffer

FIG 2-3 Denta-
Medica’s 6-week 
recovery program 
is aimed at optimiz-
ing vitamin D and 
antioxidant levels 
prior to implant 
placement.
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help to prevent tissue damage caused by reactive oxygen 
species (ROS). Growing evidence suggests that ROS are 
crucial regulators of several phases of wound healing. In 
recent years, ROS have gained attention because of their 
central role in the progression of many inflammatory 
diseases.18 Excessive production of ROS or impaired ROS 
detoxification causes oxidative damage, which has been 
shown to be a main cause of nonhealing chronic wounds 
and tissue degeneration.19,20

In simple terms, ROS are oxygen-free radicals and other 
nonradical oxygen derivatives involved in tissue degrada-
tion.21 They are produced during normal cellular metabo-
lism by cells in most tissues. To combat oxidative stress, 
all cells in the body are equipped with an intrinsic store 
of antioxidants, which prevent tissue damage.22 However, 
when this balance is shifted and there are not enough anti-
oxidants to match the high levels and activity of ROS, DNA 
damage, protein damage, and lipid peroxidation can occur. 
This in turn leads to impaired wound healing and long-term 
chronic degenerative disease as well as whole body tissue 
inflammation, all of which have been linked with common 
diseases such as dementia and various cancers.

The problem is that much of the US population has insuf-
ficient antioxidant levels. In fact, epidemiologic studies from 
the United States have demonstrated that vitamin deficien-
cies range dramatically among the population (Box 2-1). 
Absorption of vitamins and minerals is negatively affected by 
poor diet, aging, immunosuppressive drugs, chemotherapy 
or radiotherapy, and diseases like diabetes. Furthermore, 
alcohol consumption,23 smoking,24 and hypertension25 are all 
associated with higher rates of vitamin deficiencies and/or 
oxidative stress as well as oral health diseases like periodon-
titis. As such, supplementation with low–molecular weight 
antioxidants and ROS-detoxifying enzymes has become vital 
for many individuals with deficiencies.26 

There are two categories of antioxidants: (1) enzymatic 
antioxidants such as superoxide dismutase (SOD), cata-
lase (CAT), glutathione peroxidase/reductase, DNA repair 
enzymes, and various metal ion sequestrators; and (2) scav-
enging antioxidants or chain-breaking antioxidants such as 
ascorbic acid (vitamin C), carotenoids (including retinol- 
vitamin A), uric acid, α-tocopherol (vitamin E), coenzyme 

Q, and polyphenols (flavonoids). All are potent antioxidants 
commonly associated with improved wound healing.

In an effort toward the maintenance of optimal levels 
of the aforementioned antioxidants (as well as the overall 
desire for patients to improve general health), additional 
supplementation with vitamins and minerals to treat nutri-
tional deficiencies have become routine in modern culture. 
Nevertheless, prior to implant placement, the treating clini-
cian should factor into account that a large percentage of 
the population remains deficient in many important vita-
mins and minerals and that all patients would benefit from 
high-quality dosing prior to implant placement with vita-
mins made under GMP standards (good medical practice). 

Necessary Vitamins and Minerals for 
Healing and Recovery

Vitamin D
Vitamin D is an extremely important vitamin for bone metab-
olism and is well known for its role in calcium homeostasis. 
It also acts as a powerful antioxidant with anti-inflammatory 
activity because it acts directly on immune cell cytokine expres-
sion.27 As explained throughout this chapter, vitamin D defi-
ciency is by far the most prevalent and severe deficiency in the 
modern population, and supplementation is always required.

Vitamin C
Vitamin C plays a significant role in periodontal health 
and maintenance. Vitamin C is a potent antioxidant; its 
primary function is as a radical scavenger, and it is required 
for the synthesis of collagen hydroxylation in humans.28 It 
also contributes to immune defense by supporting various 
cellular functions of both the innate and adaptive immune 
system. Vitamin C supports epithelial barrier function 
against pathogens and promotes the oxidant scavenging 
activity of the soft tissues, thereby potentially protecting 
against environmental oxidative stress by ultimately kill-
ing the microbia. Vitamin C deficiency results in impaired 
immunity and higher susceptibility to infections. Further-
more, infections significantly impact vitamin C levels due 
to enhanced inflammation and metabolic requirements.29

Vitamin C is rapidly depleted and oxidized within the extra-
cellular fluids during oxidative stress.30 It is especially import-
ant for bone-forming osteoblasts to lay new bone matrix. 
Sources of vitamin C include natural fruits and vegetables 
such as gooseberry, broccoli, kiwi, grapefruits, citrus fruits, 
cauliflower, strawberries, pineapple, cherries, and potatoes. 
It is recommended to eat high levels prior to dental surgery.

BOX 2-1 Overall vitamin deficiency in the US population

Vitamin A = 34% deficient
Vitamin C = 25% deficient
Vitamin D = 70% deficient

Vitamin E = 60% deficient
Calcium = 38% deficient
Magnesium = 45% deficient
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Flavonoids

Flavonoids are polyphenolic compounds found in plants 
known to contain potent antioxidant, anti-inflammatory, 
anti-allergic, antiplatelet, and antitumor activities.31 They 
also have a positive effect against diverse diseases such as 
cancer, neurodegenerative diseases, and cardiovascular 
disease.32 A potent synergistic relationship exists between 
flavonoids and vitamin C; together they make a powerful 
antioxidant combination.33 Flavonoids also help to protect 
blood vessels from rupture or leakage. A popular source 
of flavonoids is green tea. Other sources include parsley, 
onions, blueberries and other berries, bananas, citrus fruits, 
Ginkgo biloba, red wine, sea buckthorns, and dark chocolate 
(with a cocoa content of > 70%).

B vitamins
Vitamin B1 (also called thiamin) and vitamin B2 (also called 
riboflavin) are both vitamins that help convert food into 
energy. Vitamin B1 is a hydrosoluble vitamin that plays a role 
in several biologic processes, particularly glucose metabo-
lism.34 Vitamin B2 helps maintain eyesight. 

Vitamin B12 helps regulate the nervous system and plays 
a role in growth and red blood cell formation. It is found 
primarily in meat and dairy products. Vitamin B6 (also called 
pyridoxine) helps the body fight infections. It is primarily 
found in chickpeas, tuna, salmon, whole grains and cereals, 
beef liver, ground beef, and chicken breast. 

Biotin is a water-soluble vitamin that’s a part of the vita-
min B family that also helps convert certain nutrients into 
energy. It plays an important role in the health of your hair, 
skin, and nails.

Carotenoids
Carotenoids are a set of naturally colored pigments. Vitamin 
A is one of the major carotenoids. Carotenoids are antioxi-
dant in nature and have protective effects on vitamins C and 
E. They also show synergistic effects by scavenging reactive 
nitrogen species. Beta-carotene is the main source of vita-
min A in the diet. Carotenoids have a significant influence 
on other antioxidants, and hence they are considered vital in 
antioxidant defense mechanisms. Sources include tomatoes, 
apricots, guavas, watermelons, papayas, and pink grapefruits.

Magnesium
Magnesium is a cofactor in more than 300 enzyme systems 
that regulate diverse biochemical reactions in the body, 
including protein synthesis, muscle and nerve function, 

blood glucose control, and blood pressure regulation.35,36 
Magnesium is also required for energy production, oxidative 
phosphorylation, and glycolysis. It contributes to the struc-
tural development of bone and is required for the synthesis 
of DNA, RNA, and the antioxidant glutathione. Magnesium 
also plays a role in the active transport of calcium and potas-
sium ions across cell membranes. It is mostly consumed in 
nuts, almonds, cashews, peanuts, and spinach.36

Zinc
Zinc is an essential trace element (micronutrient) that plays 
important roles in human physiology. Zinc is a cofactor for 
many metalloenzymes required for cell membrane repair, 
cell proliferation, growth, and immune system function. The 
pathologic effects of zinc deficiency include the occurrence 
of skin lesions, growth retardation, impaired immune func-
tion, and compromised would healing.37

Manganese
Manganese is predominantly stored in the bones, liver, 
kidney, and pancreas and provides a role in the formation 
of connective tissue, bones, blood-clotting factors, and sex 
hormones. It assists in fat and carbohydrate metabolism, 
calcium absorption, and blood sugar regulation.

Selenium
Selenium is yet another powerful antioxidant that fights oxida-
tive stress and helps defend the body from chronic diseases. 

In addition to the aforementioned antioxidants, there are 
a number of other micronutrients and macronutrients that 
may play a significant role in periodontal health and disease 
prevention. All recovery programs should provide antioxi-
dants as their major beneficial component in the prevention 
of disease and implemented wound healing.

Case Report of Implant Failure as a  
Suspected Result of Vitamin D Deficiency
Dental implants are routinely placed with long-term success 
rates above 90% to 95%.38–41 Yet a small percentage of 
implants are lost each year with unexplained findings. This 
section presents such a case where vitamin D deficiency was 
the suspected culprit for the failure. 

A 73-year-old man presented with sufficient alveolar 
ridge width for implant placement in the posterior mandi-
ble (Fig 2-4a). The patient was not on any medication and 
was considered healthy. Following midcrestal flap eleva-
tion, a bone reduction was performed to allow adequate 
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width for implant placement with 1 to 2 mm of remain-
ing width on the buccal and lingual (Fig 2-4b). Note the 
excellent ridge width. Figure 2-4c demonstrates the implant 
osteotomies leaving adequate bone width on either side. 
Following implant placement at torque values of 40 Ncm  
(Fig 2-4d), soft tissue closure was obtained (Fig 2-4e), and 
the patient was advised to maintain hygiene and perform 
saltwater rinses after meals. A periapical radiograph was 
taken immediately after implant placement and demon-
strates adequate bone levels (Fig 2-4f).

At the 2-week recall, suture removal was performed, 
and the patient was advised to be seen 1 month later. At 
the 1-month postoperative recall, clinical mobility of the 
implants was observed, and periapical radiography revealed 

severe bone loss around the implants (Fig 2-4g). The 
implants had to be removed. 

The patient was sent for medical analysis to determine 
why the implants failed. Upon testing of a full blood workup, 
the main finding was the patient’s low vitamin D levels in 
the deficient range. The patient was then supplemented 
with a 12-week recovery program with DentaMedica, and 
subsequent implant placement was successful. 

This case represents a typical scenario whereby simple 
osseointegration is expected in a relatively straightforward 
case yet unexplained early failure occurs. Once the vitamin 
levels are recovered and optimized to promote local healing, 
however, implant placement is successful.

FIG 2-4 (a) Mandibular ridge missing two poste-
rior teeth. The ridge width is adequate for implant 
placement. (b) Following midcrestal flap eleva-
tion and bone reduction, adequate bone width 
is observed clinically. (c) Implant osteotomies 
created. (d) Implant placement with adequate 
bone width around both implants. (e) Soft tissue 
closure. (f ) Periapical radiograph taken imme-
diately after surgery demonstrating excellent 
implant placement. (g) At 1 month postopera-
tive, the patient presents with implant mobility. 
Note the radiolucency around both implants, 
which had to be removed. (Case performed by 
Dr Mark Bishara.)

a

d
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e

g

b c



21

              References 

Patient Testing and Supplementation

As explained earlier in this chapter, vitamin D testing is 
recommended prior to any bone grafting or implant place-
ment procedures. This has been made easy with the Nano-
Speed Test4D, which uses a simple finger prick to get the 
blood necessary for testing (see Fig 2-2). Upon discovery of 
low vitamin D levels, patients can be supplemented with the 
DentaMedica recovery program to achieve adequate levels 
prior to surgery. After the initial regimen, patients may elect 
to remain on DentaMedica, taking half doses throughout 
the remaining course of their implant therapy and mainte-
nance programs.

In a 2021 study by Paz et al, the effects of DentaMedica were 
investigated in a case series from routine dental practice.42 
The aim of the study was twofold: (1) to assess three 
different methods of evaluating vitamin D, including two 
finger prick tests and standard routine blood labs; and  
(2) to evaluate the effects of a 6-week course of Denta- 
Medica supplementation on vitamin D levels.

The first important finding was that 65% of the popula-
tion had an initial vitamin D deficiency (below 30 ng/mL). 
Secondly, no differences in vitamin D levels (±5 ng/mL) 
were found between either of the finger prick tests (Rapid 
D, Vit4D) when compared to standard blood tests, confirm-
ing the accuracy of the in-office devices. And finally, after 
supplementation with DentaMedica, vitamin D levels 
increased from an average of 24.76 ng/mL to 50.11 ng/mL. 
Every participant enrolled in the study achieved significantly 
higher vitamin D scores within a 6-week period, reaching 
sufficient levels for implant placement. And every implant 
placed in the study after supplementation osseointegrated 
successfully. Larger clinical trials are needed in the future 
to further evaluate the long-term success of implants in 
patients with and without optimized vitamin D levels.

Conclusion
Vitamin D deficiency remains one of the most prevalent 
vitamin deficiencies in modern populations, and a direct 
link has been reported between vitamin D levels and bone 
tissue homeostasis and remodeling in the literature. Vita-
min D is one of the body’s most powerful immunomod-
ulators as well, and as such it directly affects the body’s 
ability to accept or reject foreign biomaterials. Recent stud-
ies have demonstrated an early implant failure rate nearly 
300% higher for implants placed in patients with vitamin 
D deficiency compared to patients with adequate levels of 
vitamin D, which is why testing and supplementation are 
recommended prior to any surgical intervention. 
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